If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X^2=40^2
We move all terms to the left:
X^2+X^2-(40^2)=0
We add all the numbers together, and all the variables
2X^2-1600=0
a = 2; b = 0; c = -1600;
Δ = b2-4ac
Δ = 02-4·2·(-1600)
Δ = 12800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12800}=\sqrt{6400*2}=\sqrt{6400}*\sqrt{2}=80\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{2}}{2*2}=\frac{0-80\sqrt{2}}{4} =-\frac{80\sqrt{2}}{4} =-20\sqrt{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{2}}{2*2}=\frac{0+80\sqrt{2}}{4} =\frac{80\sqrt{2}}{4} =20\sqrt{2} $
| 9x+3=2x-8 | | 23/4a=91/4 | | 4^(2x)=0.25 | | (3x-17)+(5x-21)=180 | | 4=z/7.4 | | 208=8(-6x-4) | | 7x+20=111 | | 3=z/81 | | x+(6/7)=(5/8) | | 3(8x)=19 | | -123=3(8a-1) | | 58+11x=9x-84 | | 2x-12.45=102.45 | | 8s+3(13-7s)=49 | | 8s+3(13-7s)=48 | | -2-3(3y-4)=-31+2y-2 | | -7(-a-4)=84 | | 3a×4=6 | | -9+2k=-3 | | 3a+9=4 | | 11/2x=42 | | -196+12x=79+7x | | 11y-6y-11=39.75 | | F(4)=l(4)-6l | | 2/3m+4=14 | | 124=-8v+4(6-3v) | | 4n-6+n=2 | | 2/3a+4=14 | | x−7/6+x+3/7=4/21 | | 8(x+4)=10(×-2) | | x−7/6+x+3/7=421 | | -2(8v+1)=126 |